Energy harvesting technologies provide a promising alternative to battery-powered systems and create an opportunity to achieve sustainable computing for the exploitation of ambient energy sources. However, energy harvesting devices and power generators encompass a number of non-classical system behaviors or characteristics, such as delivering nondeterministic power density, and these would create hindrance for effectively utilizing the harvested energy. Previously, we have investigated new design methods and tools that are used to enable power adaptive computing and, particularly, catering non-deterministic voltage, which can efficiently utilize ambient energy sources. Also, we developed a co-optimization approach to maximize the computational efficiency from the harvested ambient energy. This paper will provide a review of these methods. Emerging technologies, such as 3D-IC, which would also enable new paradigm of green and high-performance computing, will be also discussed.
Energy harvesting technologies provide a promising alternative to battery-powered systems and create an opportunity to achieve sustainable computing for the exploitation of ambient energy sources. However, energy harvesting devices and power generators encompass a number of non-classical system behaviors or characteristics, such as delivering nondeterministic power density, and these would create hindrance for effectively utilizing the harvested energy. Previously, we have investigated new design methods and tools that are used to enable power adaptive computing and, particularly, catering non-deterministic voltage, which can efficiently utilize ambient energy sources. Also, we developed a co-optimization approach to maximize the computational efficiency from the harvested ambient energy. This paper will provide a review of these methods. Emerging technologies, such as 3D-IC, which would also enable new paradigm of green and high-performance computing, will be also discussed.