位置:成果数据库 > 期刊 > 期刊详情页
基于Hamilton体系的弹性力学问题的比例边界有限元方法
  • ISSN号:1007-4708
  • 期刊名称:《计算力学学报》
  • 时间:0
  • 分类:O241[理学—计算数学;理学—数学]
  • 作者机构:[1]大连理工大学建设工程学部水利工程学院,大连116024
  • 相关基金:国家自然科学重点基金(90510018); 大连理工大学交叉学科建设专项(数学+X)项目(MXDUT072001)资助项目
中文摘要:

比例边界有限元方法是求解偏微分方程的一种半解析半数值解法。对于弹性力学问题,可采用基于力学相似性、基于比例坐标相似变换的加权余量法和虚功原理得到以位移为未知量的系统控制方程,属于Lagrange体系。但在求解时,又引入了表面力为未知量,控制方程属于Hamilton体系。因而,本文提出在比例边界有限元离散方法的基础上,利用钟万勰教授提出的弹性力学对偶(辛)体系求解方法,通过引入对偶变量,直接在Hamil-ton体系框架内建立控制方程。再利用区段混合能和对偶方程得到了有限域、无限域边界静力刚度所满足的代数Riccati方程,该方程可采用特征向量展开方法和精细积分方法进行求解。

英文摘要:

The scaled boundary finite element method(SBFEM) is a semi-analytical and semi-numerical solution approach for solving partial differential equation.For problem in elasticity,the governing equations can be obtained by mechanically based formulation,Weighted residual formulation and principle of virtual work based on Scaled-boundary-transformation.These formulations are described in the frame of Lagrange system and the unknowns are displacements.In this paper,the discretization of the SBFEM and the dual system to solve elastic problem proposed by W.X.Zhong are combined to derive the governing equations in the frame of Hamilton system by introducing the dual variables.Then the algebraic Riccati equations of the static boundary stiffness matrix for the bounded and unbounded domain are derived based on the hybrid energy and Hamilton variational principle in the interval.The eigen-vector method and precise integration method can be employed to solve the algebraic Riccati equations for static boundary stiffness matrice.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算力学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:大连理工大学 中国力学学会
  • 主编:程耿东
  • 地址:辽宁省大连理工大学《计算力学学报》编辑部
  • 邮编:116024
  • 邮箱:jslxxb@dlut.edu.cn
  • 电话:0411-84708744 84709559
  • 国际标准刊号:ISSN:1007-4708
  • 国内统一刊号:ISSN:21-1373/O3
  • 邮发代号:8-180
  • 获奖情况:
  • 中国期刊方阵双效期刊,Ei Compenelex收录期刊,获2003年大连市期刊最佳印制奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,美国应用力学评论,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9563