一个新模型被提出与椭圆体的包括围住 composites 的有效有弹性的 moduli。在现在的纸,为每椭圆体的包括的转变层被介绍为更低的界限为上面的界限和试用压力地做试用排水量地满足为变化原则的申请绝对必要的连续接口条件。根据最小的势能和最小的互补精力的原则,有椭圆体的包括的 composites 的有效有弹性的 moduli 上的上面、更低的界限严厉地被导出。分发的效果和有效有弹性的 moduli 的界限上的椭圆体的包括的几何参数在细节被分析。当时,现在的上面、更低的界限仍然是有限的体积并且砍椭圆体的包括的 moduli 趋于到无穷并且零分别地。现在的方法简单并且不必计算多点的关联功能的复杂积分,这应该被提及。同时,现在的纸提供一个完全不同的方法与椭圆体的包括围住 composites 的有效有弹性的 moduli,它能被开发由拿不同试用排水量和压力地获得一系列界限。
A new model is put forward to bound the effective elastic moduli of composites with ellipsoidal inclusions. In the present paper, transition layer for each ellipsoidal inclusion is introduced to make the trial displacement field for the upper bound and the trial stress field for the lower bound satisfy the continuous interface conditions which are absolutely necessary for the application of variational principles. According to the principles of minimum potential energy and minimum complementary energy, the upper and lower bounds on the effective elastic moduli of composites with ellipsoidal inclusions are rigorously derived. The effects of the distribution and geometric parameters of ellipsoidal in- clusions on the bounds of the effective elastic moduli are an- alyzed in details. The present upper and lower bounds are still finite when the bulk and shear moduli of ellipsoidal inclusions tend to infinity and zero, respectively. It should be mentioned that the present method is simple and needs not calculate the complex integrals of multi-point correlation functions. Meanwhile, the present paper provides an entirely different way to bound the effective elastic moduli of composites with ellipsoidal inclusions, which can be developed to obtain a series of bounds by taking different trial displacement and stress fields.