位置:成果数据库 > 期刊 > 期刊详情页
具有未知侧滑和打滑的WMR强化学习自适应神经网络控制
  • ISSN号:1000-2243
  • 期刊名称:《福州大学学报:自然科学版》
  • 时间:0
  • 分类:TP24[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:福州大学机械工程及自动化学院,福建福州350116
  • 相关基金:国家自然科学基金资助项目(51175084); 福建省自然科学基金资助项目(2015J05121); 福州大学科研启动基金资助项目(510078);福州大学科技发展基金资助项目(650053)
中文摘要:

利用反演设计,提出一种强化学习自适应神经网络轮式移动机器人(WMR)轨迹跟踪控制方法.首先在极坐标下建立WMR的轨迹跟踪误差模型,并基于此设计运动学控制器.然后,针对WMR动力学系统,设计自适应神经网络控制器.结合强化学习机制,同时对系统未知侧滑、打滑和模型不确定性进行优化补偿,并引入鲁棒控制项来消除补偿误差的影响,进一步提高了控制效果.所提控制方法使得闭环系统稳定,且最终一致有界收敛,其有效性通过数值仿真结果得到了验证.

英文摘要:

A reinforcement learning adaptive neural network trajectory tracking control scheme is proposed for WMR,based on back stepping technique. Firstly,the trajectory tracking error model is established,and the kinematic controller is designed based on this model. Then,for WMR dynamic system,the adaptive neural network controller with reinforcement learning is designed,and unknown skidding,slipping and model uncertainties of the system are compensated optimally,the robust compensators are also used to eliminate the effects of compensating error,so the control performance is enhanced. The stability and ultimately uniformly bounded convergence of system are guaranteed with proposed control scheme. Simulations prove the validity of the proposed control scheme.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《福州大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:福州大学
  • 主办单位:福州大学
  • 主编:杨黄浩
  • 地址:福建省福州市大学新区学园路2号
  • 邮编:350116
  • 邮箱:xb@fzu.edu.cn
  • 电话:0591-22865030 22865031
  • 国际标准刊号:ISSN:1000-2243
  • 国内统一刊号:ISSN:35-1117/N
  • 邮发代号:34-27
  • 获奖情况:
  • 全国高校优秀自然科学学报,华东地区优秀期刊,福建省优秀科技期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:8994