利用有限元方法设计了一套相对简单明了的求解Fokker-Planck方程的方案.这个方案不必严格限制计算格点的步长和时间步长,就可以确保分布函数的非负性和粒子数的守恒.通过一维程序模拟,进一步证实了这个方案的可靠性.对于多维问题的分析和一维问题完全一样,所以非常容易将其推广到多维问题.
A numerical scheme for the Fokker-Planck equation is proposed with a finite element method, which is relatively simple for implementation and physically clear. It assures a positive distribution function and particle-number eonservation without specific requirement on grid and time step. The scheme is confirmed in one-dimensional simulations. It can be extended easily to multi-dimensional eases.