应用一维相对论电磁粒子模拟程序,研究了线性极化强激光入射到无碰撞密度均匀的次临界密度等离子体中所引起的受激陷俘电子声波散射不稳定性过程。不稳定性的早期行为与是否考虑离子动力学效应无关,当考虑离子动力学效应之后会激发一个随时间增长的离子声波,并且最终由于大振幅电磁孤立子的产生而中断,由于电磁孤立子内的静电场与电磁场所产生的离子加速与俘获效应,导致一个离子涡旋在离子相空间中形成;当电磁孤立子向后加速过程中,若干个离子涡旋结构随之形成。研究发现,离子涡旋结构同样存在于密度不均匀的次临界密度等离子体中,从拓扑的观点看,离子涡旋结构的形成是由于拓扑缺陷即等离子体密度凹陷所致,是Kelvin-Helmholtz不稳定性中Ying-Yang类型的一个范例。
Stimulated trapped electron-acoustic wave scattering instability by a linearly-polarized laser interacting with a plasma layer at a suberitieal density range is studied by particle simulation. Its early behavior is almost the same whether ion dynamics is taken into account or not. However, when ion dynamics is considered, a large ion acoustic wave is excited, which grows with time and eventually breaks up locally, followed by the generation of a large amplitude electromagnetic soliton. As a new phenomenon, an ion-vortex structure in ion phase-space is formed due to the ion acceleration and trapping by high local electromagnetic and electrostatic fields inside the soliton. As the electromagnetic soliton is accelerated backwards, several ion-vortices are formed in the wake behind. Ion-vortices are also found in inhomogeneous suberitieal plasmas. These ion-vortices are recognized as the Kelvin-Helmholtz instability patterns, likely to be formed due to a topological defect, i.e. , the plasma density cavity in the electromagnetic soliton region, which exhibit the well-known paradigmatic Ying-Yang pattern.