相对于连续时间控制,脉冲控制的优点在于只需在离散时刻施加由对状态采样产生的脉冲就可以实现受控系统的稳定,从而提高了带宽使用效率,脉冲控制已成为复杂系统镇定与同步的一种重要控制方法。然而,现有的脉冲同步结果大多数是基于时不变的Lyapunov函数分析方法,该方法只能利用脉冲区间的上界信息,所提出的脉冲同步方案需要假设系统的全部状态信息是可得到的。为此文中研究了一般混沌Lur’e系统的输出反馈脉冲同步问题。为充分利用同步误差系统状态在脉冲时刻状态跳变的信息,引入不连续的Lya-punov函数,分析同步误差系统的指数稳定性。在此基础上,应用凸组合技术,得到了同步误差系统指数稳定性新的充分条件。该充分条件同时依赖于脉冲区间的上界和下界,降低了已有结果的保守性。进一步地,基于线性矩阵不等式,给出了输出反馈脉冲增益矩阵的设计方法。最后,由Chua's电路输出反馈脉冲同步的数值例子说明了所得结果的有效性。
Compared with continuous-time control,the advantage of impulsive control lies in that it allows stability of the controlled systems only using impulses generated by samples of the state at discrete time instants and thereby increases the efficiency of bandwidth usage.Impulsive control has become an important control method in stabilization and synchronization of complex systems.However,most of the existing results concerning impulsive synchronization are based on time-invariant Lyapunov function analysis method,which can only utilize the information about the upper bound of impulsive interval,and the proposed impulsive synchronization schemes require that knowledge of the full state vectors of the systems is available.This paper investigates the problem of output feedback impulsive synchronization for general chaotic Lur'e systems.To exploit more information about jump phenomena of the state of the synchronization error system at impulse times,a discontinuous Lyapunov function is introduced to analyze the exponential stability of synchronization error system.Based on the above analysis,convex combination technique is applied to derive a new sufficient condition for exponential stability of synchronization error system.The new sufficient condition depends both on the lower bound and the upper bound of impulsive interval,which reduces the conservatism of the existing results.Furthermore,based on linear matrix inequalities,the design method of output feedback impulsive gain matrix is presented.Finally,a numerical example concerning output feedback impulsive synchronization of Chua's circuit is provided to illustrate the efficiency of the obtained results.