位置:成果数据库 > 期刊 > 期刊详情页
基于PSVM的主动学习肿块检测方法
  • 期刊名称:计算机研究与进展
  • 时间:2012
  • 页码:572-578
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安电子科技大学电子工程学院,西安710071
  • 相关基金:国家杰出青年科学基金项目(61125204); 国家自然科学基金项目(61172146); 中央高校基本科研业务费专项资金(K50510020013); 陕西省自然科学基础研究计划资助项目(2011JQ8018)
  • 相关项目:基于广义稀疏表示的异质人脸图像变换和质量评价
中文摘要:

肿块区域通常形态各异、差异性较大,并且与正常组织相比没有明显的区别,严重影响了肿块自动检测系统的性能.为了能够有效地提高乳腺X线图像中肿块的检测灵敏度,通过引入包含了样本间相互制约关系的具有成对约束的SVM (PSVM)算法,提出了一种基于PSVM 的主动学习机制.其中,由系统根据样本的不确定性和相互之间的特征匹配距离,主动选择应该反馈给训练集的成对样本.实验结果表明,这种基于PSVM的主动学习方法,能够充分利用样本所包含的信息,使得检测方法具有更好的推广能力和检测性能.

英文摘要:

In mammograms,masses always vary widely in their shapes and densities,and yet share common appearances with the normal tissues.This point extremely increases the detection difficulty and also impacts the performance of the automatic mass detecting system.To improve the sensitivity of mass detection system,we propose an active learning scheme to detect various masses on mammograms.Firstly,the pairwise constraints are introduced,and the scheme conducts with pairwise support vector machine(PSVM) by involving the relationship among different samples into the classification procedure.Furthermore,according to the detection results,the missed samples with their uncertainty information are combined with the matched feature distance among different samples to provide for re-consideration.Then,with the representative information,the proposed PSVM-based method actively selects the pairwise samples that should be feed back to the training set.The experimental results show that the proposed active learning method with PSVM could make full use of the information of samples,and thus,it could get satisfactory detection rates and false positives during the detection procedure.The method can also get good compromise between the sensitivity and specificity,and the whole learning scheme has better generalization ability and detection performance in comparison with some existing detection methods.

同期刊论文项目
期刊论文 113 会议论文 43
同项目期刊论文