高斯过程隐变量模型是近年来新兴的无监督降维方法,它可以找到高维数据的低维流形结构.但是由于高斯过程隐变量模型是无监督的概率降维方法,所以当数据集中的样本有类别标记信息时,高斯过程隐变量模型不能利用这些监督信息,实现分类的任务.为了使高斯过程隐变量模型可以处理分类任务,文中提出了一种监督的高斯过程隐变量模型分类模型.通过最大化后验似然的方法确定观测数据在隐空间的坐标,同时可以完成分类任务.实验结果证明了该模型可以有效地用于分类.
Gaussian process latent variable model is a new probabilistic approach for dimensionality reduction. It can obtain a low-dimensional manifold of a data set in an entirely unsupervised way. However, when there is some supervised information in the data set, Gaussian process latent var- iable model cannot use this information for supervised tasks, e. g. , classification and regression learning. For this purpose, a supervised Gaussian process latent variable model for classification is developed. The maximum-a-posterior algorithm is employed to estimate all latent variables position. Compared with the traditional Gaussian process latent variable model, the supervised version of this model shows more advantages in experiments.