位置:成果数据库 > 期刊 > 期刊详情页
一种基于高斯隐变量模型的分类算法
  • ISSN号:0254-4164
  • 期刊名称:计算机学报
  • 时间:2012.12.1
  • 页码:2661-2667
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]西安电子科技大学电子工程学院,西安710071
  • 相关基金:本课题得到国家自然科学基金(61125204,61172146,61100158)、教育部博士点基金(20090203110002)、中央高校基本科研业务费(K50511020002)和中国博士后科学基金资助.
  • 相关项目:多媒体信息处理与分析
中文摘要:

高斯过程隐变量模型是近年来新兴的无监督降维方法,它可以找到高维数据的低维流形结构.但是由于高斯过程隐变量模型是无监督的概率降维方法,所以当数据集中的样本有类别标记信息时,高斯过程隐变量模型不能利用这些监督信息,实现分类的任务.为了使高斯过程隐变量模型可以处理分类任务,文中提出了一种监督的高斯过程隐变量模型分类模型.通过最大化后验似然的方法确定观测数据在隐空间的坐标,同时可以完成分类任务.实验结果证明了该模型可以有效地用于分类.

英文摘要:

Gaussian process latent variable model is a new probabilistic approach for dimensionality reduction. It can obtain a low-dimensional manifold of a data set in an entirely unsupervised way. However, when there is some supervised information in the data set, Gaussian process latent var- iable model cannot use this information for supervised tasks, e. g. , classification and regression learning. For this purpose, a supervised Gaussian process latent variable model for classification is developed. The maximum-a-posterior algorithm is employed to estimate all latent variables position. Compared with the traditional Gaussian process latent variable model, the supervised version of this model shows more advantages in experiments.

同期刊论文项目
期刊论文 113 会议论文 43
同项目期刊论文
期刊信息
  • 《计算机学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国计算机学会 中国科学院计算技术研究所
  • 主编:孙凝晖
  • 地址:北京中关村科学院南路6号
  • 邮编:100190
  • 邮箱:cjc@ict.ac.cn
  • 电话:010-62620695
  • 国际标准刊号:ISSN:0254-4164
  • 国内统一刊号:ISSN:11-1826/TP
  • 邮发代号:2-833
  • 获奖情况:
  • 中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国数学评论(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:48433