For their distinguished global warming potential(GWP100)and long atmosphere lifespan,CF4,SF6 and SF5CF3were significant in the field of greenhouse gas research.The details of discharging character and the optimal parameter were discussed by using a Dielectric Barrier Discharge(DBD)reactor to decompose these potent greenhouse gases in this work.The results showed that SF6 could be decomposed by 92% under the conditions of 5 min resident time and3000 V applied voltage with the partial pressure of 2.0 k Pa,28.2 k Pa,and 1.8 k Pa for SF6,air and water vapor,respectively.0.4 k Pa CF4 could be decomposed by 98.2% for 4 min resident time with 30 k Pa Ar added.The decomposition of SF5CF3 was much more effective than that of SF6 and CF4and moreover,1.3 k Pa SF5CF3,discharged with 30 k PaO2,Ar and air,could not be detected when the resident time was 80 s,40 s,and 120 s,respectively.All the results indicated that DBD was a feasible technique for the abatement of potent greenhouse gases.
For their distinguished global warming potential(GWP100)and long atmosphere lifespan,CF_4,SF_6 and SF_5CF_3were significant in the field of greenhouse gas research.The details of discharging character and the optimal parameter were discussed by using a Dielectric Barrier Discharge(DBD)reactor to decompose these potent greenhouse gases in this work.The results showed that SF_6 could be decomposed by 92% under the conditions of 5 min resident time and3000 V applied voltage with the partial pressure of 2.0 k Pa,28.2 k Pa,and 1.8 k Pa for SF_6,air and water vapor,respectively.0.4 k Pa CF_4 could be decomposed by 98.2% for 4 min resident time with 30 k Pa Ar added.The decomposition of SF_5CF_3 was much more effective than that of SF_6 and CF_4and moreover,1.3 k Pa SF_5CF_3,discharged with 30 k PaO_2,Ar and air,could not be detected when the resident time was 80 s,40 s,and 120 s,respectively.All the results indicated that DBD was a feasible technique for the abatement of potent greenhouse gases.