设G为有限群,01(G)表示G中最高阶元素的阶,礼1(G)表示G中最高阶元素的个数.设G一共有r个o1(G)阶元,其中心化子的阶两两不同,并依次设这些中心化子的阶为C1(G),C2(G),… Cr(G).令ONCI(G)={o1(G);n1(G);c1(G),c2(G),…,Cr(G)),称ONCI(G)为G的第一ONC-度量.本文证明了Mathieu群可由其第一ONC一度量ONCI(G)完整刻画.
Let G be a finite group, ol (G) denote the largest element order of G, and nl (G) denote the number of the elements of order ol (G). Assume that G totally has r elements of order ol (G), of which the centralizers are of different orders, and ci (G) denote the order of centralizer of ith element of order ol (G). Define 0NC1 (G) = {ol (G); nl (G); cl (G), c2 (G),. …… , cr (G)}. We call ONCI(G) the 1st ONC-degree of G. In this paper, we prove that Mathieu groups can be uniquely determined by their 1st ONC-degree ONC1 (G).