针对微细电火花加工和深孔电火花加工过程中频繁出现放电信号严重畸变、放电状态不稳定甚至放电状态突变等实际加工情况,建立基于模糊逻辑的电火花加工放电状态逐级映射检测系统;在此基础上,将局域波分解理论引入电火花加工放电状态预测的研究,结合系统辨识理论和线性预测方法,建立基于局域波分解的电火花加工放电状态预测数学模型,提出基于局域波分解的电火花加工放电状态预测方法。试验证明,基于局域波分解的电火花加工放电状态预测方法的预测精度高、辨识数据短、运算速度快、实时性强,能够有效消除传统预测方法的滞后性,达到提高微细和深孔电火花加工效率、增强电火花加工预测控制系统稳定性的目的,确保加工质量和加工效率等工艺目标的良好实现。
In allusion to the frequent electrical signals distortion, unstable discharge state, and even the discharge state mutation in micro electrical discharge machining (EDM) and deep-hole EDM, the EDM discharge state progressive mapping detection system based on fuzzy logic is established, and local wave decomposition theory is introduced into the study of EDM discharge state prediction. When combined with system identification theory and linear prediction method, the mathematical model of EDM discharge state prediction based on local wave decomposition is established, theory and the corresponding prediction method is put forward. The experiments show the high accuracy, short identification data, fast arithmetic speed, and high real-time performance of this new prediction method. And this method can eliminate the lag occurring in traditional prediction methods. It improves the efficiency of micro and deep-hole EDM, enhances the stability of the prediction and control system, and ensures the process goals, etc.