位置:成果数据库 > 期刊 > 期刊详情页
Solitary wave solution to Aw-Rascle viscous model of traffic flow
  • ISSN号:0253-4827
  • 期刊名称:Applied Mathematics and Mechanics (English Edition
  • 时间:2013.4.4
  • 页码:523-528
  • 分类:O29[理学—应用数学;理学—数学]
  • 作者机构:[1]Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, P. R. China, [2]Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China, [3]Department of Transportation Engineering, TOD-based Sustainable Urban Transportation Center, Ajou University, Suwon 443-749, Korea, [4]Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai 200072, P. R. China
  • 相关基金:Project supported by the National Natural Science Foundation of China(Nos. 11072141 and 11272199), the National Basic Research Program of China (No. 2012CB725404), the Shanghai Pro- gram for Innovative Research Team in Universities, the Research Grants Council of the Hong Kong Special Administrative Region, China (No. HKUT184/10E), and the National Research Foundation of Korea (MEST)(No. NRF-2010-0029446)
  • 相关项目:行人流问题的流体力学建模与数值模拟
中文摘要:

This paper uses the Taylor expansion to seek an approximate Kortewegde Vries equation(KdV) solution to a higher-order traffic flow model with sufficiently large diffusion. It demonstrates the validity of the approximate KdV solution considering all the related parameters to ensure the physical boundedness and the stability of the solution. Moreover, when the viscosity coefficient depends on the density and velocity of the flow, the wave speed of the KdV solution is naturally related to either the first or the second characteristic field. The finite element method is extended to solve the model and examine the stability and accuracy of the approximate KdV solution.

英文摘要:

This paper uses the Taylor expansion to seek an approximate Korteweg- de Vries equation (KdV) solution to a higher-order traffic flow model with sufficiently large diffusion. It demonstrates the validity of the approximate KdV solution considering all the related parameters to ensure the physical boundedness and the stability of the solution. Moreover, when the viscosity coefficient depends on the density and velocity of the flow, the wave speed of the KdV solution is naturally related to either the first or the second characteristic field. The finite element method is extended to solve the model and examine the stability and accuracy of the approximate KdV solution.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用数学和力学:英文版》
  • 主管单位:交通部
  • 主办单位:上海大学
  • 主编:周哲玮
  • 地址:上海市宝山区上大路99号上海大学122信箱
  • 邮编:200444
  • 邮箱:amm@department.shu.edu.cn
  • 电话:021-66135219 66165601
  • 国际标准刊号:ISSN:0253-4827
  • 国内统一刊号:ISSN:31-1650/O1
  • 邮发代号:
  • 获奖情况:
  • 上海市优秀科技期刊一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,美国应用力学评论
  • 被引量:541