针对超磁致伸缩微位移驱动器(GMA)的非线性迟滞特性,通过密度函数法和F函数法建立GMA的两种Preisach数值模型,仿真和试验表明F函数法对滞回曲线的预测效果优于密度函数法。为将Preisach数值模型应用于GMA的实际控制系统,提出一种Preisach实时数字补偿算法,建立基于Preisach前馈补偿的PID控制模型,分别采用开环、普通PID和带Preisach前馈补偿的PID三种控制器对GMA的位置跟踪和轨迹跟踪两种控制问题进行试验研究,结果表明带Preisach前馈补偿的PID控制器可显著提高GMA的响应速度和跟踪精度,使GMA在100μm量程内的位置跟踪和轨迹跟踪误差分别达到3μm、2μm。
Aiming at the non-linearity and hysteresis of giant magnetostrictive actuator (GMA), two numerical realization of Preisach model by density function method (DFM) and F fuction method (FFM) are present. Experiment and simulation show that FFM is better than DFM over predict precision of hysteresis loops. To make the Preisach numerical model in application to practical control of GMA, a real-time numerical compensation algorithm for preisach model is pointed out, and a PID plus Preisach feedforward compensation (PFC) control model is build up, open-loop, general PID and PID plus PFC are independently applied to GMA for the position tracking and trajectory tracking. Experiment results reveal that PID plus PFC has faster response, higher precision of position tracking and trajectory tracking than open-loop and general P/D, 3μm position tracking error and 2 μm trajectory tracking error in the range of 100 μm can be attained by PID plus PFC.