群G的一个子群H称为G的几乎τ-嵌入子群,如果G有一个s-拟正规子群T使得HT在G中s-拟正规且H∩T≤HτG,其中HτG是所有含于H的G的τ-拟正规子群生成的子群.通过研究有限群G的Sylowp-子群(p是|G|的一个素因子)的极大子群的几乎τ-嵌入性,得到群G的p-超可解性.同时,又通过研究有限群G的极小子群的几乎τ-嵌入性,得到群G的p-幂零性.
A subgroup H of a group G is said to be nearly τ-embedded in G if G has an s-quasinormal subgroup T such that HT is s-quasinormal in G and H ∩ T≤HrG,where HrG is the subgroup of H generated by all those subgroups of H which are τ-qusinormal in G.In this paper,the p-supersolublity and p-nilpotency of finite group are investigated by studying the nearly τ-embedded properties of the maximal subgroup and the minimal subgroup of Slyow subgroup of finite group.