考虑了单位圆T=R/Z上的随机区间In(w)=wn+(-ln/2;ln/2)(mod1),其中{ln}n≥1为一列单调下降并趋于0的正实数,{wn}n≥1为T上的一列独立同分布且具有Gibbs分布测度的随机变量.借助于重分形分析中的工具,估计了被随机区间序列{In(w))有限次覆盖以及无穷多次覆盖的集合的Hausdorff维数.
We consider the random intervalsIn(w)=wn+(-ln/2;ln/2)(mod1)(mod 1), where {in}n〉_1 is a sequence of positive real numbers which is decreasing to zero and {ln}n≥1 is an i.i.d, sequence with Gibbs distribution measure on the circle {wn}n≥1 Using the tools from multi-fractal analysis, we estimate the Hausdorff dimension of sets which are covered finitely or infinitely many times by {In(w)}.