位置:成果数据库 > 期刊 > 期刊详情页
粒矩阵属性约简的启发式算法
  • ISSN号:1000-1220
  • 期刊名称:《小型微型计算机系统》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]武汉理工大学计算机科学与技术学院,湖北武汉430070
  • 相关基金:国家自然科学基金项目(50878172)资助;教育部高校行动计划项目(2004XD-03)资助;武汉理工大学自主创新研究基金项目(2010-ZY-JS-001)资助.
中文摘要:

属性约简是粗糙集理论一个重要的研究问题.在粗糙集理论上,利用粒计算的思想构建了粒矩阵,提出并定义了粒矩阵相与运算,建立了基于粒矩阵的知识粒化方法,并且给出了粒矩阵属性约简的启发式算法.采用粒矩阵进行属性约简选择最小属性集,跳出了传统属性约简的先求解属性核,再求解最优属性集的方法.理论分析表明了新的算法是可靠有效的,给粒计算属性约简提供一个新的思路,为进一步研究粒计算提供可行的方法.

英文摘要:

Attribute reduction is one of important issues in rough set theory. Based on rough set theory, this paper establishes the granular matrix with the idea of granular computing, defines the AND operation of granular matrix, presents the knowledge granulation method based on granular matrix and proposes an attribute reduction algorithm. The attribute reduction, using granular matrix to select the minimal attribute set, is different from the traditional attribute reduction which acquires the attribute kernel at first and then selects the best attribute set. Theoretical analysis shows that the new algorithm is reliable and valid. The algorithm could provide a new paradigm for the attribute reduction of granular computing and a feasible method for further research on granular computing.

同期刊论文项目
期刊论文 12 会议论文 3 专利 2
同项目期刊论文
期刊信息
  • 《小型微型计算机系统》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院沈阳计算技术研究所
  • 主编:林浒
  • 地址:沈阳市浑南新区南屏东路16号
  • 邮编:110168
  • 邮箱:xwjxt@sict.ac.cn
  • 电话:024-24696120 024-24696190-8870
  • 国际标准刊号:ISSN:1000-1220
  • 国内统一刊号:ISSN:21-1106/TP
  • 邮发代号:8-108
  • 获奖情况:
  • 中国自然科学核心期刊,中国科学引文数据库来源期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23212