为了描述复杂的噪声环境,考虑了一种具有频率结构的噪声——简谐速度噪声,包括它的产生、关联函数、功率谱以及作为热噪声时的频率特性所导致的一些行为.结果表明:在频谱空间中简谐速度噪声是一种带通噪声,存在一个峰值频率,且噪声带宽由参量Г控制.当简谐势中的一个布朗粒子受热简谐速度噪声驱动时,粒子能量极大值出现在两种频率相等的情况下,这表明噪声和势场的频率之间存在动力学共振,决定着粒子能量的大小.
A noise with frequency structure, i.e. the harmonic velocity noise is investigated to describe the complicated noise environment. We studied the noise' s occurrence, correlation function, power spectrum, as well as some behaviors caused by its frequency characteristics when it acts as a thermal noise. The results show that the harmonic velocity noise is band-passing in frequency spectral space with a peak frequency and the band width is determined by Г. If a Brownian particle in a harmonic potential is driven by a thermal harmonic velocity noise, its maximum energy appears when the two frequencies are equal. This testifies that there is a dynamical resonance between the frequencies of the noise and the potential, which controls the particle's energy.