位置:成果数据库 > 期刊 > 期刊详情页
四节点二十四自由度平板壳单元几何刚度矩阵显式解析式的推演算法研究
  • ISSN号:1007-4708
  • 期刊名称:计算力学学报
  • 时间:2013.12.10
  • 页码:796-801
  • 分类:U448.215[建筑科学—桥梁与隧道工程;交通运输工程—道路与铁道工程] U238[交通运输工程—道路与铁道工程]
  • 作者机构:[1]School of Civil Engineering, Central South University, Changsha 410075, China
  • 相关基金:Projects(50908232, 51108460) supported by the National Natural Science Foundation of China
  • 相关项目:大跨度柔性桥梁稳定极限承载力简化分析理论研究
作者: 文颖|曾庆元|
中文摘要:

Ballastless tracks have been widely applied in high-speed railway (HSR). The adaptability research between continuous welded rails (CWR) and long-span bridges of HSR is of great practical engineering significance. Based on the HSR long-span continuous bridges, the integrative spatial finite element model of track-bridge-pier-foundation system was established with the nonlinear spring element simulating the longitudinal resistance between track and bridge. Comparative study on the various additional longitudinal forces of CWR using the common fasteners and small resistance fasteners was carried out. Analysis results indicate that the additional expansion forces and additional rail-breaking forces in long-span ballastless continuous girders can be reduced evidently by 40% 50% after adopting small resistance fasteners, but lead to greater rail broken gap. The small resistance fasteners have little influence on the additional force only caused by vertical load, but can reduce the additional force caused by vertical load combined with braking load by over 10%. Besides, transient analysis method is proved to be more accurate and safe in calculating additional longitudinal forces when the train running or braking on the bridge, compared with the traditional static method.

英文摘要:

Ballastless tracks have been widely applied in high-speed railway (HSR). The adaptability research between continuous welded rails (CWR) and long-span bridges of HSR is of great practical engineering significance. Based on the HSR long-span continuous bridges, the integrative spatial finite element model of track-bridge-pier-foundation system was established with the nonlinear spring element simulating the longitudinal resistance between track and bridge. Comparative study on the various additional longitudinal forces of CWR using the common fasteners and small resistance fasteners was carried out. Analysis results indicate that the additional expansion forces and additional rail-breaking forces in long-span ballastless continuous girders can be reduced evidently by 40%-50% after adopting small resistance fasteners, but lead to greater rail broken gap. The small resistance fasteners have little influence on the additional force only caused by vertical load, but can reduce the additional force caused by vertical load combined with braking load by over 10%. Besides, transient analysis method is proved to be more accurate and safe in calculating additional longitudinal forces when the train running or braking on the bridge, compared with the traditional static method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算力学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:大连理工大学 中国力学学会
  • 主编:程耿东
  • 地址:辽宁省大连理工大学《计算力学学报》编辑部
  • 邮编:116024
  • 邮箱:jslxxb@dlut.edu.cn
  • 电话:0411-84708744 84709559
  • 国际标准刊号:ISSN:1007-4708
  • 国内统一刊号:ISSN:21-1373/O3
  • 邮发代号:8-180
  • 获奖情况:
  • 中国期刊方阵双效期刊,Ei Compenelex收录期刊,获2003年大连市期刊最佳印制奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,美国应用力学评论,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9563