本文主要对相对对称度量和1-度量给与了研究,得出以下结果:(1)若Y在X中对称度量化,且Y在X中是Lindeloef的,则Y的离散且在X中闭的子空间的基树是可数的。(2)若Y在X中对称度量化且Y的每个离散子空间的基数是可数的,则Y在X中的Souslin数是可数的。(3)如果Y在正则空间X中严格1-度量化,则X在Y上是正规的。
In this paper, we study some properties of relative symmetrizability and 1-metric and show that the following results: (1). If Y is symmetrizable in X and Y is Lindelf in X, then the cardinality of every closed in X discrete subspace of Y is countable. of every discrete subspace of Y is countable, then the (2). If Y is symmetrizable in X and the cardinality Souslin number of Y in X is countable. (3). If Y is strictly 1-metrizable in a regular space X, then X is normal on Y.