在红外搜索与跟踪系统中,背景杂波抑制效果将直接影响到低信噪比条件下点状运动目标的检测及跟踪性能。利用RBF神经网络的非线性映射能力和遗传算法的全局搜索机制,本文研究了一种利用遗传算法(GA)优化RBF神经网络的背景杂波抑制技术。杂波抑制后,残留噪声的高斯性和独立性通过Kendall秩相关法和计算Friedman统计量的方法进行了验证,背景杂波抑制效果与BP神经网络和常用的Uniform加权函数进行了比较,结果表明本文研究方法可行有效。
The performance of moving point targets' detection and tracking under the condition of low SNR IR images is direct influenced by the suppression of background clutter in the infrared search and track system(IRST).With the nonlinear mapping ability of RBF neural network and global search capability of Genetic Algoothm(GA),a kind of image background clutter suppression technique based on RBF neural network optimized by genetic algorithm is presented in this paper.Gaussianity and independency of residuals are also verified using Kendall rank correlation and Friedman statistic methods.The performance of the suppression of background clutter is also compared to the BP neural network and Uniform weight function.The experiments show this method is feasible and efficient.