本文利用Littlewood-Paley分解,Fourier变换和逆变换等方法,研究了双线性Fourier乘子在非齐次正光滑性Triebel-Lizorkin空间和Besov空间的有界性.
Using the Littlewood Paley decomposition technique, Fourier transform and inverse Fourier transform, we study the boundedness of bilinear Fourier multi- plier operators on the scales of inhomogeneous Triebel-Lizorkin and Besov spaces with positive smoothness.