进高增值 CH 4 的公司 2 的 Photocatalytic 减小是精力和环境危机的一个有希望的解决方案。与 cocatalysts 集成半导体能为 photocatalytic 公司 2 减小改进这些活动;然而,大多数金属 cocatalysts 主要生产公司和 H 2 。此处,我们为显著地提高公司 2 的 photocatalytic 减小进 CH 4 报导一条 cocatalyst hydridation 途径。进 PdH 0.43 的 Hydriding Pd cocatalysts 在表演改进起了一个双作用。是由我们的同位素的标记实验揭示了, PdH 0.43 氢化物 cocatalysts 减少了 H 2 进化,它压制了 H 2 生产并且便于 CO 中介的变换进最后的产品:CH 4 。同时, hydridation 支持了在 cocatalysts 上套住的电子,改进充电分离。这条途径在 Pd 上从 3.2% ~ 63.6% 在 CH 4 生产增加了 photocatalytic 选择 { 100 } 并且从 15.6% ~ 73.4% 在 Pd 上 { 111 } 。结果提供卓见进 photocatalytic 机制研究并且为向 photocatalytic 公司 2 变换设计材料介绍新机会。
Photocatalytic reduction of CO2 into high value-added CH4 is a promising solution for energy and environmental crises. Integrating semiconductors with cocatalysts can improve the activities for photocatalytic CO2 reduction; however, most metal cocatalysts mainly produce CO and H2. Herein, we report a cocatalyst hydridation approach for significantly enhancing the photocatalytic reduction of CO2 into CH4. Hydriding Pd cocatalysts into PdH0.43 played a dual role in performance enhancement. As revealed by our isotopic labeling experiments, the PdH0.43 hydride cocatalysts reduced H2 evolution, which suppressed the H2 production and facilitated the conversion of the CO intermediate into the final product: CH4. Meanwhile, hydridation promoted the electron trapping on the cocatalysts, improving the charge separation. This approach increased the photocatalytic selectivity in CH4 production from 3.2% to 63.6% on Pd{100} and from 15.6% to 73.4% on Pd{111}. The results provide insights into photocatalytic mechanism studies and introduce new opportunities for designing materials towards photocatalytic CO2 conversion.