Z 计划是一条有希望的途径完成用途广泛的光催化。有有 1.0 eV 的乐队差距的另一个半导体的 TiO 2 的集成将对紫外的收获和在可见附近理想为光催化的红外线的光;然而,大多数 narrow-bandgap 半导体让与组成一个障碍到为 photocatalytic 氢生产形成 Z 计划的 TiO 2, 跨骑乐队结构排列。在这通讯,我们表明 Ag 2 是的 S 在哪儿的一个模型系统精力乐队分享一个接口,一个金属罐头克服的 narrow-bandgap 半导体换高速档这限制。制作设计,我们开发了一条唯一的途径综合 Ag 2 SAgTiO 2 混血儿结构。戏剧性地展出的获得的第三的混合结构在完整光谱的轻照明下面在 photocatalytic 氢生产提高了性能。这些活动比 Ag 2 SAgTiO 2 结构在下面 < 400 nm 并且 > 他们在任何轻照明下面的对应物的象那些一样的 400 nm 照耀调节。
A Z-scheme is a promising approach to achieve broad-spectrum photocatalysis. Integration of TiO2 with another semiconductor with a band gap of -1.0 eV would be ideal to harvest both ultraviolet and visible-near infrared light for photocatalysis; however, most narrow-bandgap semiconductors have straddling band structure alignments with TiO2, constituting an obstacle to forming the Z-scheme for photocatalytic hydrogen production. In this communication, we demonstrate Ag2S as a model system where the energy band upshift of the narrow-bandgap semiconductor that shares an interface with a metal can overcome this limitation. To fabricate the design, we developed a unique approach to synthesize Ag2S-Ag-TiO2 hybrid structures. The obtained ternary hybrid structures exhibited dramatically enhanced performance in photocatalytic hydrogen pro- duction under full-spectrum light illumination. The activities were significantly higher than the sum of those of Ag2S-Ag-TiO2 structures under λ〈 400 nm and λ 〉 400 nm irradiation as well as those of their counterparts under any light illumination conditions.