位置:成果数据库 > 期刊 > 期刊详情页
污水处理过程的QSOM出水水质预报
  • ISSN号:1000-582X
  • 期刊名称:《重庆大学学报:自然科学版》
  • 时间:0
  • 分类:TP273[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]重庆大学 自动化学院, [2]城市建设与环境工程学院,重庆400000
  • 相关基金:国家自然科学基金资助项目(60974090);教育部博士点基金资助项目(200806110021);中央高校基本科研业务费资助项目(CDJXSl0170005)
中文摘要:

针对活性污泥污水处理过程中微生物活动的不确定性、生化反应的复杂性及工艺参数的强耦合和大滞后等特性,提出一种量子自组织特征映射神经网络(QSOM)方法来进行出水水质预报。该方法将出水水质在异常情况下所对应的进水数据样本转换成量子态形式提交给网络输入层,通过计算量子输入与相应权值的相关系数作为网络的最佳输入匹配,学习规则中采用量子门更新网络权值。最后通过某污水处理厂生化处理过程中的实际运行数据的实验表明所提预报方法是有效的。

英文摘要:

A quantum self-organizing feature map neural network (QSOM) method is introduced for water quality prediction in activated sludge wastewater treatment processes which includes uncertainty of microbial activity and complexity of biochemical reactions and strong lagging of parameters. This approach quantizes the inlet water quality data corresponding outlet water in abnormal state and makes the quantized data sample as the input of QSOM. The correlation coefficient of the quantum inputs and its weights are calculated as the best inputs matching of network by using quantum gates to update the weights in learning the rules. The experiments illustrate the efficiency of this prediction approach by using operational data of Chongqing Jiguanshi wastewater treatment plant.

同期刊论文项目
期刊论文 50 会议论文 2 获奖 2 专利 1 著作 1
同项目期刊论文
期刊信息
  • 《重庆大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:重庆大学
  • 主编:王时龙
  • 地址:重庆市沙坪坝正街174号
  • 邮编:400044
  • 邮箱:cdxhz@equ.edu.cn
  • 电话:023-65102302
  • 国际标准刊号:ISSN:1000-582X
  • 国内统一刊号:ISSN:50-1044/N
  • 邮发代号:78-16
  • 获奖情况:
  • 中国高校精品科技期刊,重庆市一级期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:26478