位置:成果数据库 > 期刊 > 期刊详情页
后验概率加权的模糊隶属度函数
  • ISSN号:1000-582X
  • 期刊名称:《重庆大学学报:自然科学版》
  • 时间:0
  • 分类:TP274[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]重庆师范大学计算机与信息科学学院,重庆401331, [2]重庆大学自动化学院,重庆400044
  • 相关基金:国家自然科学基金资助项目(60974090);重庆市教育委员会科学技术研究项目(K]090823,KJll0629)
中文摘要:

模糊支持向量机(FSVM)中的模糊隶属度函数确定一直是一个难点问题。针对支持向量分类机对噪声数据或孤立点非常敏感的问题,受贝叶斯决策理论的启发,结合样本密度特性,研究样本点相对于同类和异类的关系,对各样本点分布的紧密程度给出了描述,构造了样本点的后验概率与样本密度的加权方法,提出了一种新的加权模糊隶属度函数构造。该方法避免了对噪声数据和孤立点的检测。通过建立基于提出模糊隶属函数的FSVM进行仿真,实验表明,提出的模糊隶属度函数构造的后验概率加权方法的有效性。

英文摘要:

The determination of fuzzy membership function in the fuzzy support vector machine (FSVM) is a difficult problem. To solve the problem of being sensitive to the noises and outliers in support vector machine, by the inspiration of Bayesian decision theory, combining with sample density characteristics, sample points relation between same class and other class is researched, and the tightness on each sample points is described. Based on that, method of posterior probability and sample density weight are given to each sample, and new fuzzy membership function is proposed. The detection of the noises and outliers is avoided by this method. Numerical simulation shows that the improved fuzzy membership function method is effective.

同期刊论文项目
期刊论文 50 会议论文 2 获奖 2 专利 1 著作 1
同项目期刊论文
期刊信息
  • 《重庆大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:重庆大学
  • 主编:王时龙
  • 地址:重庆市沙坪坝正街174号
  • 邮编:400044
  • 邮箱:cdxhz@equ.edu.cn
  • 电话:023-65102302
  • 国际标准刊号:ISSN:1000-582X
  • 国内统一刊号:ISSN:50-1044/N
  • 邮发代号:78-16
  • 获奖情况:
  • 中国高校精品科技期刊,重庆市一级期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:26478