位置:成果数据库 > 期刊 > 期刊详情页
一种多重最小支持度关联规则挖掘算法
  • ISSN号:0367-6234
  • 期刊名称:《哈尔滨工业大学学报》
  • 时间:0
  • 分类:TP182[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]北京工业大学计算机学院,北京100022, [2]聊城大学数学科学学院,山东聊城252059, [3]国家农业信息化工程技术研究中心,北京100097
  • 相关基金:国家自然科学基金资助项目(60871042);国家高技术研究发展计划资助项目(2003AA118010、2007AA012179).
中文摘要:

针对单一最小支持度挖掘关联规则不能反应不同数据项出现频度与性质的问题,提出了一个基于频繁模式树的多重支持度关联规则挖掘算法MSDMFIA(Multiple minimum Supports for Discover Maximum Fre-quent Item sets Algorithm),根据不同数据项的特点定义多重支持度,通过挖掘数据库中的最大频繁项目集,计算最大频繁候选项目集在数据库中的支持度来发现关联规则.该算法可以解决关联规则挖掘中经常出现的稀少数据项问题,并解决了传统的关联规则挖掘算法中的生成频繁候选集和多次扫描数据库的性能瓶颈.实验结果表明,本文提出的算法在功能和性能方面均优于已有算法.

英文摘要:

Aiming at the problem that traditional methods with only one minsup can not completely reflect different appearing frequencies and natures of different data items, based on FP-Tree, a new algorithm is proposed called MSDMFIA (Multiple minimum Supports for Discover Maximum Frequent Item sets Algorithm). The algorithm allows users to specify multiple minsups to reflect various items natures. Through mining the maximum frequent item sets, calculating minsups of the maximum candidate frequent item sets, the association rules can be discovered. The algorithm resolves the bottlenecks in traditional algorithms, e. g. , the rare item problem, the frequent generation of candidate item sets and database scanning. Experimental results show that functionality and performance of the proposed algorithm is significantly improved compared with existing algorithms.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《哈尔滨工业大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国工业和信息化部
  • 主办单位:哈尔滨工业大学
  • 主编:冷劲松
  • 地址:哈尔滨市南岗区西大直街92号
  • 邮编:150001
  • 邮箱:
  • 电话:0451-86403427 86414135
  • 国际标准刊号:ISSN:0367-6234
  • 国内统一刊号:ISSN:23-1235/T
  • 邮发代号:14-67
  • 获奖情况:
  • 2000年获黑龙省科技期刊评比一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27329