We propose a quantum-mechanical Brayton engine model that works between two superposed states,employing a single particle confined in an arbitrary power-law trap as the working substance. Applying the superposition principle,we obtain the explicit expressions of the power and efficiency,and find that the efficiency at maximum power is bounded from above by the function: η+= θ/(θ+1),with θ being a potential-dependent exponent.
We propose a quantum-mechanical Brayton engine model that works between two superposed states,employing a single particle confined in an arbitrary power-law trap as the working substance. Applying the superposition principle,we obtain the explicit expressions of the power and efficiency,and find that the efficiency at maximum power is bounded from above by the function: η+= θ/(θ+1),with θ being a potential-dependent exponent.