位置:成果数据库 > 期刊 > 期刊详情页
基于灰色预测模型和粒子滤波的视觉目标跟踪算法
  • ISSN号:1001-0920
  • 期刊名称:控制与决策
  • 时间:2012.1.1
  • 页码:53-57
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科学技术大学自动化系,合肥230027
  • 相关基金:国家自然科学基金项目(61075073)高等学校博士学科点专项科研基金项目(20093402110014).
  • 相关项目:基于灰色定性仿真的智能模拟方法及典型应用研究
中文摘要:

结合灰色预测模型和粒子滤波,提出一种新的视觉目标跟踪算法.由于粒子滤波未考虑先验信息对建议分布产生的指导作用,不能很好地逼近后验概率分布,对此,采用历史状态估计序列作为先验信息,建立该序列的灰色预测模型来预测产生建议分布.与粒子滤波、卡尔曼粒子滤波和无迹粒子滤波进行对比实验,结果表明所提出的算法在视觉目标跟踪中具有更好的性能.

英文摘要:

In this paper, a visual tracking algorithm is proposed by combining particle filter with grey prediction model. Particle filter does not take into account the guidance of historical prior on the generation of proposal distribution, so that it can not approximate posterior density well; Therefore, the history of state estimation sequence is utilized as prior information to set up grey prediction model for predicting and generating proposal distribution. Through the comparison to particle filter, Kalman particle filter and unscented particle filter, the proposed algorithm exhibits better performance in visual tracking.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《控制与决策》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:东北大学
  • 主编:张嗣瀛 王福利
  • 地址:沈阳市东北大学125信箱
  • 邮编:110004
  • 邮箱:kzyjc@mail.neu.edu.cn
  • 电话:024-83687766
  • 国际标准刊号:ISSN:1001-0920
  • 国内统一刊号:ISSN:21-1124/TP
  • 邮发代号:8-51
  • 获奖情况:
  • 1997年被评为辽宁省优秀编辑部,1999年期刊影响因子在信息与系统类期刊中排名第二位
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:32961