位置:成果数据库 > 期刊 > 期刊详情页
基于遗传算法的函数型小波网络
  • ISSN号:1006-9348
  • 期刊名称:《计算机仿真》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]湖南大学电气与信息工程学院,湖南长沙410082
  • 相关基金:国家自然科学基金(50277010);教育部博士基金(20020532016)
中文摘要:

针对传统小波神经网络易陷入局部极小等缺陷,采用遗传算法对神经网络进行优化。提出了一种结合实数编码与二进制编码的多值编码遗传算法,上述算法在同一条染色体上同时使用实数编码与二进制编码,有机结合了两者的优点,并把遗传算法用于优化函数型小波网络的结构中,可获得具有更好泛化能力的小波网络。仿真实验结果表明,利用该遗传算法训练小波神经网络,能使网络具有简单的结构形式,较高的逼近精度和较强的泛化能力,并证实了网络的有效性和优越性能。

英文摘要:

There are some disadvantages in traditional wavelet neural networks, such as falling into local minimum point easily. To avoid that disadvan -rage, networks are optimized by genetic algorithm (GA). A type of Genetic Algorithm based on multiple varibles coded with real and binary number is proposed in this paper. In this algorithm,real and binary numbers are presented simultaneously in a chromosome, which integrate the advantages of both. And then this genetic algorithm is put in the optimization of the functional wavelet neural network. So the more strengthened wavelet network is obtained. Simulation results show that WNN with hybrid genetic algorithm has a comparatively simple structure, and that it can both meet the precision request and enhance the generalization ability. The availability and superiority are testified through the result of the simulational experiment.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机仿真》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科技科工集团公司
  • 主办单位:中国航天科工集团公司第十七研究所
  • 主编:吴连伟
  • 地址:北京市海淀区阜成路14号
  • 邮编:100048
  • 邮箱:jsjfz@compusimu;kwcoltd@public.bta.net.cn
  • 电话:010-59475138
  • 国际标准刊号:ISSN:1006-9348
  • 国内统一刊号:ISSN:11-3724/TP
  • 邮发代号:82-773
  • 获奖情况:
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:38378