以郑麦9023叶片为材料,利用序列特异性PCR扩增技术克隆了春化基因VRN-1,并通过0~2℃冰箱模拟春化处理0、10、20和30d,对该基因在一叶期至九叶期叶片中的表达进行了分析。PCR分析表明,VRN-1基因在郑麦9023的A和D基因组中均为隐性,在B基因组中为显性,基因等位类型为vrnA1VrnB1vrnD1。在克隆VRN-A1、VRN-B1和VRN-D1基因序列的基础上,设计了3个等位基因的特异引物,并利用该特异引物进行半定量RT-PCR分析。结果显示,在未经春化处理的条件下,一叶期未检测到VRN-A1和VRN-D1表达,而VRN-B1已有较低水平的表达;从三叶期开始,3个等位基因都有较高水平的表达,并一直持续至开花期。在春化处理10、20和30d条件下,VRN-1的3个等位基因在一叶期就出现较高水平的表达,并保持至开花期。
Zhengmai 9023 is an elite winter wheat (Triticum aestivum L.) cultivar grown in a large scale in China, and often injured by coldness when it easily starts reproductive growth before winter because of its weak vernalization characteristic. Vernalization gene VRN-1 is one of the key genes controlling the conversion from vegetative growth to reproductive growth in wheat. To explore the regulation mechanism of vernalization in Zhengmai 9023, the VRN-1 gene was cloned from leaf tissues using gene-specific PCR amplification technique, and its expressions were analyzed under simulated vernalization at 0-2℃ for 0, 10, 20, and 30 d. The gene-specific primers were designed for semiquantitative PCR analysis based on the sequences of the VRN-A1, VRN-B1, and VRN-D1, which were cloned from Zhengmai 9023. The results showed that the genotype of VRN-1 was vrnA1VrnBlvrnD1 with the unique dominant allele in B genome of Zhengmai 9023. Under the treatment of 0 d vernalization, the expressions of VRN-A1 and VRN-D1 were not detected at one-leaf stage, whereas VRN-B1 expressed at a low level and the expressions of the three VRN-1 alleles were all at relatively high levels from three-leaf stage to flowering stage. However, under the treatments with 10 to 30 d vernalizaion, the three alleles of VRN-1 gene showed high-level expressions throughout the period from one-leaf to flowering stages.