设Ф:M→N是从黎曼流形到近Hermitian流形的水平共形映射。以Ф的dilation和N上的Lee形式表示Ф的张力场。从而导出了判别Ф为调和同态的准则。进一步给出了若干结构转移定理,其中之一为Watson型结果。
Let Ф:M→N be a horizontally conformal map from a Riemannian manifold M to an almost Hermitian manifold. The authors express the tension field of Ф in terms of the dilation of Ф and the Lee form of N, which lead to a test for Ф to be a harmonic morphism. Some results on transfer of structures involving a Watson type result are given.