位置:成果数据库 > 期刊 > 期刊详情页
近邻保持降维技术在网络异常检测中的应用
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP309[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]安阳师范学院计算中心,河南安阳455000, [2]电子科技大学计算机科学与工程学院,成都610054
  • 相关基金:国家242信息安全计划项目(No.2006C27); 电子信息产业发展基金项目(No.2007[329])
中文摘要:

针对入侵检测中的高维数据处理问题,以直推式网络异常检测方法为原型,提出了一种基于近邻保持降维方法的新模型。该模型能够用于高维数据的降维,从而减少欧氏距离的计算量,加快异常检测算法的训练及检测速度。采用著名的KDDcup99公用数据集的仿真实验表明,相比较基于主成分分析法和单类支持向量机的网络异常检测模型来说,基于近邻保持降维技术的检测模型能够在降维的同时,保持较高的检测率和较低的误报率。

英文摘要:

Aiming at the problem of high-dimensional data processing in IDS,a network anomaly detection approach based on neighborhood preserving is proposed in this papert,he prototype of which is anomaly detection method based on transduc-tion scheme.The approach proposed in this paper could be used for dimension reduction,and thus reduce resource consump-tion during the procedure of Euclidean distance computing and then accelerate the detection algorithm.Simulation and experi-mental results based on famous KDD cup99 data set demonstrate that approach proposed in this paper outperforms other ex-isting models based on principle component analysis and one-class support machine in detection rate while keeping lower false alarm rate.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887