位置:成果数据库 > 期刊 > 期刊详情页
采用压缩近邻法的高效入侵检测模型
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP309[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]安阳师范学院,河南安阳455000, [2]电子科技大学计算机科学与工程学院,成都610054
  • 相关基金:电子信息产业发展基金资助项目(信部运〔2007〕329); 国家“242”信息安全计划资助项目(2006C27)
中文摘要:

针对入侵检测中的实时性问题,提出了一种采用压缩近邻法的高效入侵检测模型。该模型能够用于精简训练集,从而加快入侵检测系统的训练及检测速度,提高了系统的实时性。为了对该模型的训练集精简效果和检测性能进行验证,采用著名的KDDCUP99公用数据集进行实验,并对比了该方法和其他入侵检测方法的检测效果和检测时间。结果表明,该模型能够在大幅降低训练集大小的情况下,提升入侵检测的实时性,并保持较好的检测效果,是一种高效的入侵检测模型。

英文摘要:

Aiming at the real-time problem for intrusion detection, this paper proposed a highly effective intrusion detection model adopting condensed nearest neighbor rules, named IDMCNN. IDMCNN could be used for training set reduction, which speeded up the training and detecting function for IDS and improved the real-time ability. To verify the performance of IDMCNN on the reduced training set and intrusion detection, performed experiments on famous public dataset KDD CUP99, performance and time consuming of intrusion detection between model proposed and compared other existing approaches among each other. Demonstrated IDMCNN is a highly effective intrusion detection model that keeps performance on detection with high real-time in such a case that the size of training set have been reduced in substantially great extent.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049