引进合适的作用-角变量变换并结合新的估计方法,对Duffing方程x^-+arctanx=p(t)(其中p(t)为连续2π周期函数满足|p(t)|〈π/2,任意t∈R)的Poincare映射应用推广的Aubry—Mather定理,得到了该方程Aubry—Mather集的存在性.
In this paper, by introducing an appropriate action-angle variable transformation and combining with new estimates, we obtain the existence of Aubry-Mather sets via generalized Aubry-Mather theorem on Poinear6 map of Duffing equations x^-+ arctanx = 'IT p(t) , where continuous 2π periodic function p(t) satisfies |p(t) | 〈π/2,unconditional V t∈R.