相似连接算法在数据清理、数据集成和重复网页检测等领域有着广泛的应用.现有相似连接算法有两种类型:基于相似度阈值的相似连接和Top-k相似连接.Top-k连接算法非常适合于相似度阈值未知的应用场景,目前最为有效的Top-k相似连接算法是Xiao等人提出的Topk-join.为了解决Topk-join中存在的性能问题,提出了一种Top-k相似连接算法Opt-join,该算法将Token批处理技术集成在现有的事件驱动框架中,以降低前缀事件的处理代价;通过置换哈希查找与过滤操作的执行位置来降低哈希查找代价,并理论证明了该置换的正确性.实验结果表明:与Topk-join算法相比,Opt-join取得了1.28倍~3.09倍的性能提升.实验数据还显示:随着数据长度的增加或k值的增长,Opt-join的性能优势有不断增加的趋势.
Similarity join is widely used in data cleaning, data integration and the detection of near duplicate Web pages. Existing similarity join algorithms fall into two categories: Threshold-based similarity join and Top-k similarity join. Top-k similarity join is suitable for applications in which the threshold is unknown in advance. The most efficient Top-k similarity join algorithm is Top-k-join, which is proposed by Xiao et al. In order to resolve the performance problemsof Topk-join, a novel Top-k similarity join algorithm Opt-join is proposed in this paper. By integrating the token batch processing technique into the existing event-driven framework, Opt-join reduces the cost of processing the prefix events. In addition, Opt-joinreduces the cost in hash lookup by switching the positions of the hash lookup and filtering operations. The correctness of the new algorithm is proved. Experimental results show that 1.28x-3.09xspeed-up is achieved by Opt-join compared with Topk-join. More importantly, with the increase of the record length or the k value, Opt-join surpasses Topk-join by a larger margin.