位置:成果数据库 > 期刊 > 期刊详情页
停用词表对中文文本情感分类的影响
  • ISSN号:1000-0135
  • 期刊名称:《情报学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]山西大学数学科学学院,太原030006, [2]上海大学计算机工程与科学学院,上海200436
  • 相关基金:国家自然基金项目(60573074);山西省自然科学基金(20041040);山西省科技攻关项目(051129) ;山西高校科技研究开发项目(200611002).
中文摘要:

本文利用三种特征选择方法、两种权重计算方法、五种停用词表以及支持向量机分类器对汽车语料的文本情感类别进行了研究。实验结果表明,不同特征选择方法、权重计算以及停用词表,对文本情感分类的影响也不尽相同;除形容词、动词和副词外的其余词语作为停用词表以及不使用停用词表对情感分类作用较大,得到的分类结果比较好;总体上,采用信息增益和布尔型权重进行中文文本情感分类的效果较好。

英文摘要:

In this paper, using three kinds of feature selection methods, two kinds weighing assignment methods, the five kinds of Stoplist and SVM on text sentiment classification are studied. The experiment results indicate that the greater text sentiment classification impact depends on other corpus, excluded adjective, verb, adverb as stop words and none stop words. As a whole, for text sentiment classification, information gain is superior to other feature selection methods and Boolean type weighting is superior to frequency type weighing.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《情报学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国科学技术情报学会 中国科学技术信息研究所
  • 主编:戴国强
  • 地址:北京复兴路15号
  • 邮编:100038
  • 邮箱:qbxb@istic.ac.cn
  • 电话:010-68598273
  • 国际标准刊号:ISSN:1000-0135
  • 国内统一刊号:ISSN:11-2257/G3
  • 邮发代号:82-153
  • 获奖情况:
  • 1992年全国优秀科技期刊评比二等奖,1997年中国科协优秀科技期刊三等奖,被国外4种检索工具录用
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国人文社科核心期刊,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:19778