为衍生物散布变换(IST ) 的最新修订的逆非线性的 Schr ? 有非消失的边界状况(NVBC ) 和正常的组速度分散的 dinger (DNLS+) 方程被在 Zakharov-Shabat 介绍一个合适的仿射的参数建议积分紧排。明确的呼吸类型 one-soliton 答案,它能在退化盒子复制一纯 soliton 和在消失的边界的限制的一个明亮的 soliton 答案,被导出验证修订 IST 的有效性。
A newly revised inverse scattering transform(IST) for the derivative nonlinear Schrdinger(DNLS+) equation with non-vanishing boundary condition(NVBC) and normal group velocity dispersion is proposed by introducing a suitable affine parameter in Zakharov-Shabat integral kern.The explicit breather-type one-soliton solution,which can reproduce one pure soliton at the de-generate case and one bright soliton solution at the limit of van-ishing boundary,has been derived to verify the validity of the revised IST.