位置:成果数据库 > 期刊 > 期刊详情页
基于LM算法的神经网络语音识别
  • ISSN号:1000-7024
  • 期刊名称:《计算机工程与设计》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]河北工业大学信息工程学院,天津300132
  • 相关基金:国家自然科学基金项目(60377020).
中文摘要:

由于语音识别中朵用标准BP算法存在的训练速度慢、容易陷入局部极小等问题,提出一种基于稳定、快速的Levenberg-Marquardt算法的神经网络语音识别方法,主要包括语音信号预处理、特征提取、网络结构优化设计、网络学习训练和语音识别等过程。其中网络隐含层节点数的选取采用黄金分割优选法。试验仿真表明,LM算法明显提高了网络训练速度,减少了训练时间,其效果优越于标准BP算法。

英文摘要:

For the defects of standard BP algorithm used in speech recognition, such as very slow training speed, very easy to falling into local minimization, and so on, a new method of neural network speech recognition is presented based on a stable and fast Levenberg- Marquardt algorithm, which includes following processing steps, speech signal preproeessing, characteristic extracting, optimization design of network structure, network training and speech recognizing. Besides, an optimization algorithm based on the principle of golden section is adopted to design the number of hidden layer nodes in neural network. The simulation experiments shows that the Levenberg-Marquardt algorithm is superior to that of standard BP, which obviously quickens training speed and decreases training time, and the application effect is notable.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与设计》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团
  • 主办单位:中国航天科工集团二院706所
  • 主编:汤铭瑞
  • 地址:北京142信箱37分箱
  • 邮编:100854
  • 邮箱:ced@china-ced.com
  • 电话:010-68389884
  • 国际标准刊号:ISSN:1000-7024
  • 国内统一刊号:ISSN:11-1775/TP
  • 邮发代号:82-425
  • 获奖情况:
  • 中国科学引文数据库来源期刊,中国学术期刊综合评价数据库来源期刊,中国科技论文统计与分析用期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:45616