该文讨论了下列拟线性椭圆方程的Dirichlet问题在一类Orlicz-Sobolev 空间中非平凡解的存在性{ -div(a(|△↓ u(x)|)△↓ u(x))=g(x, u), x ∈Ω,Ω u(x)=0, x ∈δΩ.其中Ω 是 Rn 中光滑的有界区域. Φ 和 g 满足一定条件时, 利用推广的山路引理证明了上述Dirichlet 问题存在广义的非平凡解的存在性.
In this paper, we study the existence of nontrivial solutions of the following quasilinear elliptic Dirichlet problem in an Orlicz-Sobolev space:{ -div(a(|△↓ u(x)|)△↓ u(x))=g(x, u),x ∈ Ω, u(x)=0, x ∈δΩ where Ω is a bounded domain in R^n. Using the generalized mountain pass lemma, we prove, under some conditions on φ and 9, the existence of nontrivial generalized solutions for this problem.