位置:成果数据库 > 期刊 > 期刊详情页
抗噪的未知应用层协议报文格式最佳分段方法
  • ISSN号:1000-9825
  • 期刊名称:软件学报
  • 时间:2013
  • 页码:604-617
  • 期号:03
  • 便笺:11-2560/TP
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者地址:中山大学电子与通信工程系;
  • 作者机构:[1]中山大学电子与通信工程系,广东广州510006
  • 相关基金:国家自然科学基金(60970146);国家高技术研究发展计划(863)(2007AA012449);国家自然科学基金-广东联合基金(U0735002)
作者: 黎敏;余顺争;
中文摘要:

为了自动解析未知应用层协议的报丈格式,提出一种未知应用层协议报丈格式的最佳分段方法.这种方法不需要关于未知应用层协议的先验知识.它首先建立一种用于最佳分段的隐半马尔可夫模型(HSMM),并利用未知应用层协议在网络会话过程中传输的报文序列样本集来估计该模型的参数;再通过基于HSMM的最大似然概率分段方法,对报文中的各个字段进行最佳划分,同时获取代表各个字段语义的关键词.这种方法并不要求训练集绝对纯净.它能够基于观测序列的似然概率分布,发现混杂在训练集中的其他协议数据(噪声)并进行有效过滤.实验结果表明,该方法能够解析文本和二进制协议的报文格式,依据关键词构建的协议识别特征有很高的准确识别率,并能有效地检测出噪声.

英文摘要:

In order to automatically parse message formats of unknown application-layer protocols, this paper proposes an approach to optimally segment the message formats without a priori knowledge. A hidden semi-Markov model (HSMM) is established for the segmentation and its parameters are estimated from a set of message sequences collected from application sessions. By using the estimated HSMM in the maximum most likely segmentation, a message can be optimally divided into segments and keywords that provide semantic information about the segments can be extracted. This approach does not require the training set to be absolutely pure. The noise mixed in the training set can be filtered out based on its likelihood fitting to the HSMM. The experiments conducted in this paper show that the approach is suited to both text and binary protocols. The application-layer signatures constructed from the extracted keywords are highly accurate in identifying the protocols, The noise mixed in the training set can be efficiently detected and automatically filtered out.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609