位置:成果数据库 > 期刊 > 期刊详情页
基于改进异质协同演化的测试用例生成研究
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP311.56[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:西安邮电大学计算机学院,西安710061
  • 相关基金:国家自然科学基金资助项目(61050003); 陕西省教育厅资助项目(11JK1037)
中文摘要:

路径搜索是测试用例自动生成的重要环节。针对遗传算法在测试用例生成中的早熟缺陷,提出一种改进的异质协同演化算法,将种群划分成两个子种群,分别采用遗传子群和差分子群进行演化,在演化的过程中两个子种群相互协作,通过改进迁移间隔代数和迁移率这两个参数增加扰动,更加均衡遗传算法的全局探索与差异演化算法的局部搜索。实验结果表明,该算法比遗传算法和传统异质协同演化算法在生成测试用例的收敛性能方面更具优势,因此该方法更适合测试用例自动生成的应用中。

英文摘要:

Path search is an important stage of the automatic generation of test cases. Aiming at the defect of precocity in genetic algorithm for the generation of test cases,this paper proposed a co-evolutionary algorithm of heterogeneous medium,which divided the group into two sub-groups: genetic group and differential group. These two small groups evolved through cooperation to exchange excellent elements by migration strategy. This method could balance the overall search capability of genetic algorithm and partial search of differential evolutionary algorithm. Also,the experimental results prove that this algorithm has more advantages than the traditional genetic algorithm in convergence performance of generating test cases. so this method is more suitable for the automatic generation of test cases.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049