探讨水平与竖向耦合近场强震作用对钢筋混凝土框架结构梁、柱相对抗剪性能的影响,分析双向加速度峰值比、构件剪跨比、结构竖向自振周期及框架柱初始轴压比与框架梁、柱的抗剪性能之间的关系.结果表明:峰值比及竖向自振周期的增加对梁、柱抗剪性能有明显的削弱作用;梁、柱抗剪性能系数随着剪跨比及初始轴压比的增加呈先增大后减小的变化趋势;在水平与竖向近场地震作用下,对常规的抗震设计工况,出现了混凝土框架柱先于框架梁的剪切失效破坏模式.
The influences of coupled horizontal and vertical near-field ground motions on the shear-resistant behavior of reinforced concrete(RC)frame structure are discussed.The relationship between the shearresistant behavior of frame component and the vertical to horizontal peak ground acceleration(PGA)ratio,shear span ratio of frame component,structural vertical vibration period and initial axial compression ratio are analyzed.The results show that the increase of the PGA ratio and the structural vertical vibration period can significantly weaken the shear-resistant behavior of the beams and columns.The shear behavior factors of the beam and column increase first,and then decrease with increasing in the shear span ratio and the initial axial compression ratio.Considering the general seismic design conditions,the frame column is likely to experience a shear failure prior to a shear failure of the frame beam,when the structure is subjected to the coupled horizontal and vertical near-field ground motions.