以铝(Al)为可燃物质,聚四氟乙烯(PTFE)为氧化剂,利用射频磁控溅射法制备了不同厚度,交替沉积的PTFE/Al反应多层膜。采用原子力显微镜(AFM)、X-射线衍射仪(XRD)研究了溅射功率对薄膜表面形貌的影响规律,得到了PTFE/Al反应多层膜适宜的制备工艺,利用纳米压痕仪研究了PTFE/Al反应多层膜的力学性能。结果表明,当射频溅射功率分别为50 W和150 W时,制得的PTFE薄膜和Al薄膜的平均粗糙度与均方根粗糙度均较低。当PTFE/Al反应多层膜总厚度约为300 nm时,与相同厚度的纯PTFE膜和纯Al膜相比,PTFE/Al反应多层膜具有较高的硬度和弹性模量,分别为5.8 GPa和120.0 GPa。
PTFE/Al( polytetrafluoroethylene /aluminum) reactive multilayer films with different thickness and alternating deposition were prepared by a radio frequency magnetron sputtering method using Al as combustible and PTFE as oxidant. The influence rules of sputtering power on the film surface morphology was investigated by atomic force microscope( AFM) and X-ray diffraction( XRD). The appropriate preparation technology of the films was obtained. The mechanical property of PTFE/Al reactive multilayer films was measured by a nano-indentation apparatus. Results show that when the radio frequency sputtering power is 50 W and 150 W,the mean roughness and RMS roughness of PTFE film and Al film obtained are low. When the total thickness of PTFE/Al reactive multilayer films is about 300 nm,in comparison with pure PTFE film and Al film,PTFE/Al reactive multilayer films have higher hardness and elastic modulus: 5. 8 GPa and120. 0 GPa,respectively.