基于GEO卫星几何法定轨的基本原理,推导出了顾及系统误差情形下的GEO卫星几何法定轨的数学解算模型,以及系统误差参数与位置参数间的相关性分析公式。以卫星钟差为例,分别考虑系统误差为常数项、线性项和二次多项式3种情形下的GEO卫星几何法轨道的确定。结果表明:该方法可大大减弱系统误差对GEO卫星几何法定轨结果的影响。同时还发现,上述情形下的系统误差与地固系下的位置分量X、Y具有较强的相关性,且相关系数大小随着PDOP值的变化而变化,由此降低了X、Y分量的计算精度。系统误差参数与Z分量的相关性较弱,因此Z分量的精度几乎不受影响。
The basic princ introduced. The mathematical iple of geometry orbit determination for Geosatinoary Earth Orbit (GEO) satellite is model, parameter estimators and the formula of correlative coefficients between the estimated parameters are derived for geometry orbit determination of GEO satellite with systematic errors. A simulated numerical example is conduced for three types of systematic error, the constant, the linear polynomial, and the quadratic polynomial by using the proposed method. The results show that the influence of systematic errors on the geometry orbit can be efficiently controlled with the new method. There is strong correlativity between the systematic error parameters and X, Y components, and the correlative coefficients change with the variation of PDOP. The correlativity between them and Z component is low. All these result in the precision decrease of X and Y components, and the precision is almost of Z component uninfluenced.