位置:成果数据库 > 期刊 > 期刊详情页
基于全变分扩展方法的压缩感知磁共振成像算法研究
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 时间:0
  • 分类:R445.2[医药卫生—影像医学与核医学;医药卫生—诊断学;医药卫生—临床医学]
  • 作者机构:[1]浙江理工大学信息学院,杭州310018, [2]中国计量学院生物医学工程系,杭州310018
  • 相关基金:国家自然科学基金(61272311);浙江省自然科学基金(LY14F010022, LZ15F020004);浙江省科技厅公益项目(2013C31021,2015C31075);浙江省科技厅国际科技合作研究项目(2013C24019);浙江省‘仪器科学与技术’重中之重学科开放基金;浙江理工大学521人才培养计划
中文摘要:

针对全变分算法在压缩感知磁共振成像(CS-MRI)重构过程中存在“阶梯效应”的问题,该文研究3种基于全变分扩展方法的CS-MRI成像算法,即高阶全变分、总广义变分和组合稀疏全变分,并将其与平移不变离散小波稀疏基相结合,建立稀疏模型,采用快速复合分裂算法求解CS-MRI重构的凸优化问题。同时,讨论了全变分及其扩展方法对两种不同磁共振图像数据和径向欠采样模式重构CS-MRI的精度。实验结果表明,基于全变分扩展的重构算法能有效解决全变分重建中存在阶梯效应的缺点;另外,相比高阶全变分和总广义变分重构算法,组合稀疏全变分方法具有更好的重建效果,获得更高重构信噪比。

英文摘要:

The Total Variation (TV) method is often used to reconstruct the Compressed Sensing Magnetic Resonance Imaging (CS-MRI), however, it can generate the “stair effect” in the reconstructed MR image. In this paper, there types of TV extension based methods, i.e. High Degree Total Variation (HDTV), Total Generalize Variation (TGV) and Group-Sparsity Total Variation (GSTV), are proposed to implement the sparse reconstruction of MR image. In addition, the shift-invariant discrete wavelet transform are integrated into these TV extension based methods as the sparsifying transform. The Fast Composite Splitting Algorithm (FCSA) is adopted to solve the convex optimization problem of CS-MRI reconstruction. And the Two different types of MR images with radial sampling trajectory are used to validate the reconstruction performance of CS-MRI by using the TV extension methods. The experiment results show that the TV extension based models can overcome the shortcomings of TV based model. Moreover, compared with HDTV and TGV methods, the GSTV method can obviously improve the reconstruction quality with higher Signal-to-Noise Ratio (SNR).

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739