与第三顺序的潜在的衍生物联系的一个操作符和相应于秒顺序潜力衍生物的一个力量坡度操作符一起被使用为作为一个函数的与 momenta 和势能的一张二次的表格的进动能的 Hamiltonian 的自然切开设计很多个新第四顺序的明确的 symplectic 综合者放坐标。数字模拟证明一些新最佳的 symplectic 算法以精力和位置计算的精确性是比他们的非最佳的对应物好一些的。
An operator associated with third-order potential derivatives and a force gradient operator corresponding to second-order potential derivatives are used together to design a number of new fourth-order explicit symplectic integrators for the natural splitting of a Hamiltonian into both the kinetic energy with a quadratic form of momenta and the potential energy as a function of position coordinates.Numerical simulations show that some new optimal symplectic algorithms are much better than their non-optimal counterparts in terms of accuracy of energy and position calculations.