采用速度因子方法以及最小二乘法速度因子改正方法,用于稳定范德瓦尔斯势能问题中两孤立积分的数值误差.庞加莱截面分析表明,两种方法都能保持较高的数值稳定性,提高数值结果精度.相比较而言,最小二乘法速度因子改正方法的效果更为明显.另外,对两个积分同时稳定的流形改正方案不适用于含有对称形式的孤立积分.
In order to keep numerical errors of two integrals in the Vander Waals potential problem,the velocity scaling method and the velocity scale factor with the least-squares correction method are used.From Poincare sections,it is easy to find that both of them are good devices to keep integrals,and give higher numerical accuracy than before.Compared with velocity scaling method,velocity scale factor with the least-squares correction is better at such models.Besides,manifold corrections which keep two integrals simultaneously are not perfect for symmetrical integrals.