位置:成果数据库 > 期刊 > 期刊详情页
高光谱图像混合像元分解算法
  • ISSN号:1001-9014
  • 期刊名称:红外与毫米波学报
  • 时间:0
  • 页码:210-215 + 229
  • 语言:中文
  • 分类:TP751.1[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]哈尔滨工业大学信息工程系,黑龙江哈尔滨150001, [2]黑龙江大学电子工程学院,黑龙江哈尔滨150001
  • 相关基金:国家自然科学基金资助项目(60872098)
  • 相关项目:高光谱与极化SAR图像协同处理关键技术研究
中文摘要:

传统的高光谱图像混合像元分解技术包括端元提取和估计每个端元的混合比例.虽然很多模型都能得到可以接受的解混结果,但是一些未知端元的存在使得结果在包含未知端元的像素点处出现偏差.因此,提出了一种基于支持向量数据描述的高光谱图像混合像元分解算法.首先高光谱图像数据被分成类内和类外两部分,类内是完全由已知端元数据混合的像素点,而类外数据是包含未知端元的像素点.两类数据交界处被认为是已知端元和未知端元混合的数据.然后再对这些像素点进行混合像元分解,分别对仿真数据和真实高光谱图像进行实验.结果表明该算法可以有效地解决因存在未知端元对解混精度的影响,而且能给出未知端元的解混分量.该方法的解混结果几乎不受未知端元的影响,优于直接解混结果.

英文摘要:

The traditional hyperspectral image unmixing algorithm involves the extraction of endmember and the estimation of abundance values for each endmember. Although many models usually provide acceptable unmixing results, the bias may be great in those pixels where an unknown endmember exists. Therefore, a hyperspectral image unmixing algorithm based on support vector data description (SVDD) was proposed. First, hyperspectral image datas were classified into two parts,i.e., inner-class and outer-class. The datas in the inner-class were considered as the pixels mixed by known endmember datas entirely, and the datas in outer-class included unknown endmembers. The boundary between the two classes was considered as points mixed by known and unknown endmember datas. Then, unmixing operation was carried out. Experimental results on synthetic and real hyperspectral data demonstrate that this method reduces effectively the influence of the existing unknown endmembers on unmixing results, and unmixing component with unknown endmember can be given. The results unmixed by the proposed algorithm are hardly affected by unknown endmembers and are superior to that of direct unmixing.

同期刊论文项目
期刊论文 15 会议论文 19 专利 5
同项目期刊论文
期刊信息
  • 《红外与毫米波学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院上海技术物理研究所 中国光学学会
  • 主编:褚君浩
  • 地址:上海市玉田路500号
  • 邮编:200083
  • 邮箱:jimw@mail.sitp.ac.cn
  • 电话:021-25051553
  • 国际标准刊号:ISSN:1001-9014
  • 国内统一刊号:ISSN:31-1577/TN
  • 邮发代号:4-335
  • 获奖情况:
  • 1992、1996年获全国优秀学术期刊一等奖,1999年首届国家期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,美国科学引文索引(扩展库),日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),瑞典开放获取期刊指南,中国北大核心期刊(2000版)
  • 被引量:8778