位置:成果数据库 > 期刊 > 期刊详情页
基于张量分解的多维数据填充算法
  • ISSN号:1000-3428
  • 期刊名称:计算机工程
  • 时间:0
  • 页码:-
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]杭州电子科技大学计算机学院,杭州310018
  • 相关基金:国家自然科学基金资助项目(61003193);浙江工业大学重中之重学科开放基金资助项目.
  • 相关项目:面向可视化的大尺度体数据的压缩技术研究
中文摘要:

在多维数据分析和处理中,经常会出现部分数据丢失或者部分数据未知的情况,如何利用已知数据的潜在结构对这些缺失数据进行填充是一个亟待解决的问题。目前对于缺失数据填充的研究大多是针对矩阵或者向量形式的低维数据,而对于三维以上高维数据填充的研究则很少。针对该问题,提出一种基于张量分解的多维数据填充算法,利用张量分解中CP分解模型的结构特性和分解的唯一性,实现对多维数据中缺失数据的有效填充。通过实验对以三维形式存储的部分数据缺失图像进行填充修复,并与CP-WOPT算法进行比较,结果表明,该算法具有较高的准确度以及较快的运行速度。

英文摘要:

On the multi-dimensional data analysis and processing, data with missing or unknown values is ubiquitous. How to use the potential structure of the known data to reconstruct the missing data is an urgent problem to be solved. Previously, the missing data filling mostly aims at low-dimensional data in matrix or vector format, while research on high-dimensional data above 3D is very few. To solve this problem, this paper proposes a multi-dimensional data filling algorithm based on tensor decomposition, adequately using tensor decomposition’s structure and uniqueness of CP model, to realize the multi-dimensional data filling effectively. Filling image with missing data stored in 3D format by experiment and comparison with CP-WOPT algorithm, it proves that this algorithm is not only accurate but also rapid.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139